

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

22 MAY 2006

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Mechanics 3

Monday

Morning

1 hour 30 minutes

4730

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \,\mathrm{m}\,\mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 4 printed pages.

© OCR 2006 [T/102/2703]

Registered Charity Number: 1066969

[Turn over

- A ball of mass 0.4 kg is moving in a straight line, with speed 25 m s⁻¹, when it is struck by a bat. The 1 bat exerts an impulse of magnitude 20 N s and the ball is deflected through an angle of 90°. Calculate
 - (i) the direction of the impulse, [3]
 - (ii) the speed of the ball immediately after it is struck.
- A duck of mass 2 kg is travelling with horizontal speed 4 m s^{-1} when it lands on a lake. The duck is 2 brought to rest by the action of resistive forces, acting in the direction opposite to the duck's motion and having total magnitude $(2v + 3v^2)$ N, where $v \,\mathrm{m}\,\mathrm{s}^{-1}$ is the speed of the duck. Show that the duck comes to rest after travelling approximately 1.30 m from the point of its initial contact with the surface of the lake. [8]

Two uniform rods AB and AC, of equal lengths, and of weights 200 N and 360 N respectively, are freely jointed at A. The mid-points of the rods are joined by a taut light inextensible string. The rods are in equilibrium in a vertical plane with B and C in contact with a smooth horizontal surface. The point A is 2.1 m above the surface and BC = 1.4 m (see diagram).

- (i) Show that the force exerted on AB at B has magnitude 240 N and find the tension in the string.
- (ii) Find the horizontal and vertical components of the force exerted on AB at A and state their directions. [3]
- 4 A particle is connected to a fixed point by a light inextensible string of length 2.45 m to make a simple pendulum. The particle is released from rest with the string taut and inclined at 0.1 radians to the downward vertical.
 - (i) Show that the motion of the particle is approximately simple harmonic with period 3.14 s, correct to 3 significant figures. [5]

Calculate, in either order,

- (ii) the angular speed of the pendulum when it has moved 0.04 radians from the initial position, [3]
- (iii) the time taken by the pendulum to move 0.04 radians from the initial position. [3]

[3]

[6]

Two uniform smooth spheres A and B, of equal radius, have masses 2 kg and 3 kg respectively. They are moving on a horizontal surface when they collide. Immediately before the collision A is moving with speed 12 m s^{-1} at 60° to the line of centres, and B is moving with speed 8 m s^{-1} along the line of centres (see diagram). The coefficient of restitution between the spheres is 0.5. Find the speed and direction of motion of each sphere after the collision. [12]

- 6 A bungee jumper of mass 70 kg is joined to a fixed point O by a light elastic rope of natural length 30 m and modulus of elasticity 1470 N. The jumper starts from rest at O and falls vertically. The jumper is modelled as a particle and air resistance is ignored.
 - (i) Find the distance fallen by the jumper when maximum speed is reached. [4]
 - (ii) Show that this maximum speed is $26.9 \,\mathrm{m \, s^{-1}}$, correct to 3 significant figures. [4]
 - (iii) Find the extension of the rope when the jumper is at the lowest position. [4]

[Question 7 is printed overleaf.]

4

7

A smooth horizontal cylinder of radius 0.6 m is fixed with its axis horizontal and passing through a fixed point *O*. A light inextensible string of length 0.6π m has particles *P* and *Q*, of masses 0.3 kg and 0.4 kg respectively, attached at its ends. The string passes over the cylinder and is held at rest with *P*, *O* and *Q* in a straight horizontal line (see Fig. 1). The string is released and *Q* begins to descend. When the line *OP* makes an angle θ radians, $0 \le \theta \le \frac{1}{2}\pi$, with the horizontal, the particles have speed $v \text{ m s}^{-1}$ (see Fig. 2).

(i) By considering the total energy of the system, or otherwise, show that

$$v^2 = 6.72\theta - 5.04\sin\theta.$$
 [5]

[3]

(ii) Show that the magnitude of the contact force between P and the cylinder is

$$(5.46\sin\theta - 3.36\theta)$$
 newtons.

Hence find the value of θ for which the magnitude of the contact force is greatest. [6]

(iii) Find the transverse component of the acceleration of P in terms of θ .

Mechanics 3

1	(i)		M1		For using $I = \Delta$ (mv) in the direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\cos\theta = 0.4x25$	A1		
		Direction at angle 120° to original motion	A1	3	Accept $\theta = 60^{\circ}$ with θ correctly identified.
	(ii)		M1		For using $I = \Delta$ (mv) perp. to direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\sin 60^{\circ} = 0.4v$	A1ft		_
		Speed is 43.3 ms ⁻¹	A1	3	

2		M1	For applying Newton's 2 nd Law.
		M1	For using $a = v(dv/dx)$.
	$2v(dv/dx) = -(2v + 3v^2)$	A1	
		M1	For separating variables and
			attempting to integrate.
	$2/3\ln(2+3v) = -x$ (+C)	A1ft	ft absence of minus sign,
	$[2/3\ln 14 = C]$	M1	For using $v(0) = 4$.
	$[2/3\ln 2 = -x + 2/3\ln 14]$	M1	For attempting to solve $v(x) = 0$
			for x.
	Comes to rest after travelling 1.30m	A1 8	AG

-					
3	(i)		M1		For taking moments about C for the whole structure.
		1.4R = 0.35x360 + 1.05x200	A1		
		Magnitude is 240N	A1		AG
			M1		For taking moments about A for the rod AB.
		0.7x240 = 0.35x200 + 1.05T	A1		
		Tension is 93.3N	A1	6	
	OR				
	(i)		M1		For taking moments about A for AB and AC.
		$0.7R_B = 70 + 1.05T$ and	A1		
		$0.7R_{C} = 126 + 1.05T$			
			M1		For eliminating T or for adding the equations, and then using $R_B + R_C = 560$.
		$0.7(560 - R_B) - 0.7R_B = 126 - 70$ or	A1		For a correct equation in R _B only
		0.7x560 = 70 + 126 + 2.1T			or T only
		Magnitude is 240N	A1		AG
		Tension is 93.3N	A1	6	
	(ii)	Horizontal component is 93.3 N to the	B1ft		
		left			
		Y = 240 - 200	M1		For resolving forces vertically.
		Vertical component is 40 N downwards	A1	3	

Mechanics 3

4	(i)		M1		For using Newton's 2 nd Law
		$L(m)\ddot{\theta} = -(m)g\sin\theta$ or	A1		perp. to string with $a = L \ddot{\theta}$.
		(m) $\ddot{s} = -(m)gsin(s/L)$ $\ddot{\theta} \approx -k\theta$ or $\ddot{s} = -ks$ [and motion is therefore approx, simple harmonic]	B1		
		therefore approx. simple narmonej	M1		For using $T = 2\pi / n$ and $k = w^2$
					or T = $2\pi \sqrt{L/g}$ for simple
		Period is 3.14s.	A1	5	pendulum. AG
	(ii)		M1		For using $\dot{\theta}^2 = n^2 (\theta_0^2 - \theta^2)$
					or the principle of conservation of energy
		$\dot{\theta}^2 = 4(0.1^2 - 0.06^2)$ or	A1		
		$\frac{1}{2}$ m(2.45 $\dot{\theta}$) ² =			
		$2.45 \operatorname{mg}(\cos 0.06 - \cos 0.1)$	Δ1	3	(0.1500 from energy method)
	OR	(in the case for which (iii) is attempted before (ii))	<u>A1</u>		(0.1577 Hom energy method)
	(ii)	$[\dot{\theta} = -0.2\sin 2t]$	M1		For using $\dot{\theta} = d(A\cos nt)/dt$
		$\dot{\theta} = -0.2\sin(2x0.464)$	A1ft		-
		Angular speed is 0.16 rad s ⁻¹ .	A1	3	
	(iii)		M1		For using θ = Acos nt or Asin($\pi/2$ – nt) or for using θ = Asin nt and T =t _{0.1} – t _{0.06}
		$0.06 = 0.1\cos 2t \text{ or } 0.1\sin(\pi/2 - 2t)$ or $2T = \pi/2 - \sin^{-1}0.6$	A1ft		ft angular displacement of 0.04 instead of 0.06
		Time taken is 0.464s	A1	3	

5		M1		Σ my conserved in i direction.
	$2x12\cos 60^{\circ} - 3x8 = 2a + 3b$	A1		
		M1		For using NEL
	For LHS of equation below	A1		
	$0.5(12\cos 60^\circ + 8) = b - a$	A1		Complete equation with signs of a and b consistent with previous equation.
		M1		For eliminating a or b.
	Speed of B is 0.4ms ⁻¹ in i direction	A1		
	a = -6.6	A1		
	Component of A's velocity in j direction is 12sin60°	B1		May be shown on diagram or implied in subsequent work.
	Speed of A is 12.3ms ⁻¹	B1ft		
	-	M1		For using
				$\theta = \tan^{-1}(\mathbf{j} \operatorname{comp}/\pm \mathbf{i} \operatorname{comp})$
	Direction is at 122.4° to the i direction	A1ft	12	Accept $\theta = 57.6^{\circ}$ with
				heta correctly identified.

Mechanics 3

6	(i)	T = 1470x/30	B1		
		[49x = 70x9.8]	M1		For using $T = mg$
		x = 14	A1		
		Distance fallen is 44m	A1ft	4	
	(ii)	PE loss = 70g(30 + 14)	B1ft		
		$EE gain = \frac{1470 \times 14^2}{(2 \times 30)}$	B1ft		
		$[\frac{1}{2} 70v^2 = 30184 - 4802]$	M1		For a linear equation with terms
					representing KE, PE and EE
					changes.
	~~~	Speed is 26.9ms ⁻¹	Al	4	AG
	OR	[0, 5, 2] 14 (0, 5, 20, 1	N / 1		
	(11)	$[0.5 v^{2} = 14g - 68.6 + 30g]$	MI		For using Newton's $2^{-1}$ law
					$(\sqrt{dx} = g - 0.7x)$ , integrating $(0.5 x^2 - gx - 0.35x^2 + k)$ using
					$(0.5 \text{ V} = g_{x} = 0.55 \text{ X} + \text{K})$ , using $v(0)^{2} = 60 \text{ g}$ k = 30 g and
					x(0) = 0.00 <b>x</b> = 3.00, and substituting $x = 14$
		For $14g + 30g$	B1ft		substituting x = 11.
		For $\pm 68.6$	B1ft		Accept in unsimplified form.
		Speed is 26.9ms ⁻¹	A1	4	AG
	(iii)	PE loss = 70g(30 + x)	B1ft		
		EE gain = $1470x^2/(2x30)$	B1ft		
		$[x^2 - 28x - 840 = 0]$	M1		For using PE loss = KE gain to $\mathbf{E}$
					obtain a 3 term quadratic
					equation.
		Extension is 46.2m	A1	4	
	OR				
	(iii)		M1		For identifying SHM with $n^2 = 1470/(70x30)$
			M1		For using $v_{max} = An$
		$A = 26.9 / \sqrt{0.7}$	A1		
		Extension is 46.2m	A1	4	

### **Mechanics 3**

7	(i)	$\frac{1}{2} 0.3 v^2 + \frac{1}{2} 0.4 v^2$	B1		
		$\pm 0.3$ g $(0.6$ sin $\theta$ )	B1		
		$\pm 0.4 \mathrm{g}(0.6 \theta)$	B1		
		$[0.35v^2 = 2.352\theta - 1.764\sin\theta]$	M1		For using the principle of
					conservation of energy.
		$v^2 = 6.72 \theta - 5.04 \sin \theta$	A1	5	AG
	(ii)		M1		For applying Newton's $2^{nd}$ Law radially to P and using $a = v^2/r$
		$0.3(v^2/0.6) = 0.3g\sin\theta - R$	A1		
		$[\frac{1}{2}(6.72\theta - 5.04\sin\theta) =$	M1		For substituting for $v^2$ .
		$0.3 { m gsin}  heta$ - R]			
		Magnitude is $(5.46\sin\theta - 3.36\theta)$ N	A1		AG
		$[5.46\cos\theta - 3.36 = 0]$	M1		For using dR/d $\theta = 0$
		Value of $\theta$ is 0.908	A1	6	-
	(iii)	$[T - 0.3g\cos\theta = 0.3a]$	M1		For applying Newton's 2 nd Law
			271		tangentially to P
		[0.4g - T = 0.4a]	MI		For applying Newton's 2 rd Law
					$\frac{1}{100} Q = 0.2222 A = 0.222 i z$
					[11 0.4g - 0.3gcos 0] = 0.3a is seen, assume this derives from
					T $0.3 \operatorname{gcos} \theta = 0.3 \operatorname{a} M1$
					T = 0.5gcos O = 0.5a M1 and $T = 0.4a$ M0]
		Component is $5.6 - 4.2\cos\theta$	A1	3	
	OR	I I I I I I I I I I I I I I I I I I I			
	( <b>iii</b> )	$0.4$ g - $0.3$ gcos $\theta = (0.3 + 0.4)$ a	B2		
		Component is $5.6 - 4.2\cos\theta$	B1	3	
	OR				
	(iii)	$[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$	M1		For differentiating $v^2$ (from (i)) wrt $\theta$
		$2(0.6a) = 6.72 - 5.04\cos\theta$	M1		For using $v(dv/d\theta) = ar$
		Component is $5.6 - 4.2\cos\theta$	A1	3	